segunda-feira, 29 de abril de 2024

Número 120

 Hoje, 29 de abril, é o 120.º dia do ano 2024. O número 120 é rico em predicados.


É o menor número com 16 divisores. A soma dos seus divisores é um número interessante, 360; se não contarmos com 120 a soma será 240, outro número interessante, pelo menos no que se refere à quantidade de divisores. 

____________________

120 não é um quadrado perfeito mas está perto. E é uma soma de três quadrados.

11² − 1                                                 10²+4²+2² 

 

________________________

É um número triangular (que facilmente se constrói com barras cuisenaire) pela soma dos quinze primeiros números naturais. É também um número tetraédrico, que se constrói como uma soma dos oito primeiros números triangulares.

   
 1+2+3+4+5+6+7+8+9+10+11+12+13+14+15                 1+3+6+10+15+21+28+36

_______________________________

120 pode ser escrito de 1200 maneiras diferentes como uma soma de 3 parcelas de números naturais. Por exemplo, 40+40+40 ou 30+40+50. A pergunta interessante é, quantas destas somas permitem, em virtude da desigualdade triangular, construir triângulos. As duas que referimos antes formam, respetivamente, um triângulo equilátero e um triângulo retângulo. Vejamos quantos mais triângulos de perímetro 120 podem ser construídos:



Há 3 triângulos retângulos, portanto, três ternos pitagóricos: (20, 48, 52), (24, 45, 51) e (30, 40, 50). Todos são "múltiplos" de ternos primitivos, respetivamente (5, 12, 13), (8, 15, 17) e (3, 4, 5).

quinta-feira, 25 de abril de 2024

Número 50

 Hoje completam-se 50 anos após a Revolução dos Cravos. São 18263 dias vividos em democracia. 18263 dias perfazem exatamente 2609 semanas, pelo que estamos hoje numa 5.ª feira, tal como há 50 anos atrás.


50 é soma de quadrados perfeitos, 7² + 1² = 49 + 1 e de 5² + 5² = 25 + 25

Com isso podemos construir dois triângulos retângulos 'quase' interessantes: 

  • o triângulo retângulo escaleno cujas medidas dos lados são 1, 7 e √50, 
  • o triangulo retângulo isósceles com lados de medida 5, 5 e √50. 
√50 ≅ 7,071067... pouco mais que 7😉. Seria mais interessante se 50 também fosse um quadrado perfeito.

_________________
50 não é um número triangular, mas fica 'en/cravado' entre dois números triangulares, o 45 e o 55:


Conseguimos que 50 seja a soma de números triangulares, por exemplo, 10+10+15+15.

_________________
50 também é a soma dos quatro primeiros termos da sequência destas pirâmides:


A 4.ª pirâmide é formada pela soma dos quatro primeiros quadrados perfeitos, a 3.ª pirâmide é a soma dos três primeiros quadrados perfeitos, a 2.ª é a soma dos dois primeiros quadrados perfeitos e a 1.ª é o primeiro quadrado perfeito. 

_____________________________________

50 é metade de 10², tal como 5 é metade de 10¹, 500 é metade de 10³, . . . é bom saber, porque multiplicar um número N por 50 é o mesmo que pensar na metade de N × 100, ou seja,

N × 50 = N × 100 ÷ 2, assim como N × 5 = N × 10 ÷ 2, ou N × 500 = N × 1000 ÷ 2, e todos sabemos como é fácil pensar no produto de um número por 10, 100, 1000,... assim como é fácil pensar na metade de qualquer número, não? Também dividir N por 50 é o mesmo que pensar no dobro do quociente de N por 100. Contas fáceis.

O que não é tão fácil é multiplicar a democracia. 

terça-feira, 9 de abril de 2024

Número 100

 Hoje é o dia 9 do mês de abril e é o dia 100 do ano 2024.

É possível construir cinco retângulos diferentes com 100 quadrados congruentes: 



Os divisores de 100 são 1 e 100, 2 e 50, 4 e 25, 5 e 20, e 10. 

A decomposição em fatores primos é 2²×5² que é igual ao produto de dois dos seus fatores 4×25. 

100 é um quadrado perfeito; é a soma dos quatro primeiros números cúbicos:




100 é o quadrado do 4.º número triangular, o qual é a soma dos quatro primeiros números naturais.




100 é a soma do quadrado de 8 com o quadrado de 6. Significa que há um triângulo retângulo com as medidas 6, 8 e 10 para os seus lados, sendo 10 a medida da hipotenusa.




No sistema de numeração de base oito, usando os algarismos 0, 1, 2, 3, 4, 5, 6, 7, cem escreve-se 144 (lê-se um, quatro, quatro na base oito). Ou seja  100 = 1 × 8² + 4 × 8¹ + 4 × 8⁰

Triângulos isoperimétricos

Há 833 decomposições de 100 em somas de três parcelas. Quantos triângulos de perímetro 100, com medidas inteiras, existem? Não há nenhum que seja equilátero porque 100 não é divisível por 3; mas o triângulo 33+33+34 fica muito perto disso.

Retângulos isoperimétricos

Com perímetro 100 e medidas inteiras é possível desenhar 25 retângulos, um deles é um quadrado de lado 25.