Mostrar mensagens com a etiqueta Decomposição aditiva. Mostrar todas as mensagens
Mostrar mensagens com a etiqueta Decomposição aditiva. Mostrar todas as mensagens

sexta-feira, 9 de agosto de 2024

Número 9

Dia 9 de agosto de 2024 

Fiz três triângulos diferentes, com perímetro 9, usando as barras cuisenaire. Consegues fazer outros diferentes?



Outra publicação sobre o 9 aqui.


quinta-feira, 1 de agosto de 2024

Número 214

Dia 214 de 2024, 1 de agosto

Vamos numericar com 214

214 tem apenas 4 divisores (1 e 214, 2 e 107) e somente uma escada de 4 degraus (52+53+54+55). Será que...


domingo, 28 de julho de 2024

Número 210

Dia 210 do ano dois mil e vinte e quatro, 28 de julho.

210 e 28 são ambos números triangulares: 210 é a soma dos vinte primeiros números naturais, e 28 é a soma dos sete primeiros. Mas 210 tem a particularidade de ser também o produto de dois números naturais consecutivos.



quinta-feira, 25 de julho de 2024

Número 25

Sendo as medidas de comprimento dos lados números naturais, quantos triângulos com perímetro 25 é possível construir?


Outras publicações sobre o 25: aqui e aqui.

segunda-feira, 8 de julho de 2024

Número 190

 190 de 2024 - 8 de julho

190 é um número par porque é múltiplo de 2, sendo possível dispor 190 quadrados iguais de modo a formar um retângulo de dimensões 2 e 95, ou seja, 190 = 2 × 95. De modo semelhante, é múltiplo de 10 e 19, de 5 e 38 e de 1 e 190. 


190 é décimo nono número triangular pois é a soma dos 19 primeiros números naturais: uma escada de 19 degraus, começando no 1; além dessa escada tem mais duas, uma de 4 degraus que começa em 46 e outra de 5 degraus que começa em 36 (lindo! tirando 10 a cada um dos degraus da escada de 4 degraus, consegue-se obter 4×10, que é o número necessário para formar o quinto degrau da escada de 5 degraus).


segunda-feira, 24 de junho de 2024

Número 176

 dia 176 de 2024 - 24 de junho

176 só tem uma representação como soma de números naturais consecutivos: uma escada de 11 degraus




176 é o perímetro de um triângulo retângulo cujas medidas dos lados são números naturais e constituem um terno pitagórico primitivo (48, 55, 73).


quinta-feira, 13 de junho de 2024

Número 165

 Dia 165 de 2024 - 13 de junho

______________________________________

165 pode ser representado por três somas (diferentes) de quadrados perfeitos:
         
______________________________________

165 tem sete escadas numéricas

quinta-feira, 23 de maio de 2024

Número 144

 Dia 144 de 2024  ―  23 de maio

Na imagem seguinte vê-se que

  • 144 pode ser representado pela área de oito retângulos de dimensões naturais (inteiros positivos), um dos quais é quadrado ―144 é um quadrado perfeito ―, pelo que tem quinze divisores ou, também, 144 é múltiplo de quinze fatores;
  • há dois triângulos retângulos com 144 de perímetro, cujo comprimento dos lados são números naturais; portanto estamos na presença de dois ternos pitagóricos; (36, 48, 60) e (16, 63, 65);
  • 144 é o 12º termo da sequência de Fibonacci.


_______________________

Cento e quarenta e quatro escreve-se simbolicamente 144 no sistema de numeração decimal (de base 10) significando,

  • 1 centena +  4 dezenas +  4 unidades
  •  × 100    +  × 10        +  4 × 1
  •  × 10²     +  × 10¹      +  4 × 10⁰

Enquanto soma de potências de base dois e expoente inteiro 144=128+16=27+24. Portanto, no sistema de numeração de base 2 escreve-se 10010000(dois) significando,

1×27 + 0×26 + 0×25 + 1×24 + 0×23 + 0×22 + 0×21 + 0×20

 e 144 = 122 pelo que, na base 12 escreve-se 100(doze) significando

1×122 + 0×121 + 0×120    

_________________________

Como produto de números primos 144=24×32 = 2×2×2×2×3×3

_________________________

144 pode ser decomposto diferentemente em 1728 somas de três parcelas, que corresponde a 12×144. Destas, apenas 432 (um quarto de 1728 e o triplo de 144) permitem construir triângulos (em virtude da desigualdade triangular); entre estes triângulos há dois que são retângulos (mostrados na imagem), 150 acutângulos, 280 obtusângulos. Isósceles são 35, entre os quais está um equilátero.

Triângulos perímetro = 144

Isósceles

Escalenos

Acutângulos

29*

121

Retângulos

0

2

Obtusângulos

6

274

 

*1 equilátero

 

 ______________________

Uma vez que os retângulos (ou qualquer paralelogramo) têm os lados opostos iguais, o seu perímetro (P) é composto por dois comprimentos (C) e duas larguras (L), isto é, P= 2×(C+L). Se considerarmos retângulos com perímetro de 144 unidades de comprimento, o seu semiperímetro é 72. Encontrando todas as decomposições aditivas diferentes de 72 em duas parcelas (C+L) encontramos também todas as possibilidades de construir retângulos não congruentes de perímetro 144. Como 144 é múltiplo de 4, um desses retângulos será um quadrado. Queres ser tu a descobrir quantos são? Podes responder no comentário a esta publicação.


domingo, 19 de maio de 2024

Número 140

 Dia 140 de 2024  ―  19 de maio


Cento e quarenta na base dez simbolicamente escreve-se 140 que significa 

    • 1 centena    4 dezenas    0 unidades  
    • × 100        × 10           0 × 1
    • × 10²         × 10¹         × 10⁰ 

Enquanto soma de potências de base dois temos 128+8+4 = 2⁷+2³+2²

140 é um número par: pode ser representado pela área de um retângulo de 2 por 70 e também pelo perímetro de paralelogramos de medidas naturais, por exemplo, pelo quadrado de lado 35.

140 tem 12 divisores: 1 e 140, 2 e 70, 4 e 35, 5 e 28, 7 e 20, 10 e 14, ou seja, pode ser representado de seis formas diferentes como produto de dois fatores naturais. Com fatores primos 140 = 2×2×5×7. 

140 é um número piramidal, é a soma dos sete primeiros quadrados perfeitos: 1+4+9+16+25+36+49. Também pode ser escrito como soma de três quadrados perfeitos: 100+36+4.

140 é o perímetro de um triângulo retângulo cujos lados têm medidas inteiras (terno pitagórico 40, 42, 58) 40²+42²=58².

140 pode ser representado de três maneiras diferentes como soma de números naturais consecutivos (escadas numéricas): 

  • 5 degraus: 26+27+28+29+30
  • 7 degraus: 17+18+19+20+21+22+23
  • 8 degraus: 14+15+16+17+18+19+20+21



sábado, 4 de maio de 2024

Número 125

Dia 125 de 2024 - 4 de maio

125 tem quatro divisores {1, 125, 5, 25} tal como todos os cubos perfeitos de números primos.


_______________

125 é a medida da hipotenusa de um triângulo retângulo com lados de medidas naturais, pertencendo assim ao terno pitagórico (44, 117, 125); significa que 44²+117²=125²  

125 é também o quadrado da hipotenusa de dois triângulos retângulos, sendo, portanto, de dois modos diferentes, a soma de dois quadrados perfeitos: 

5² + 10² = 125 = 2² + 11² 


A raiz quadrada de 125 é pouco maior que 11.

_________________

Sendo um múltiplo de 5, tem uma escada de 5 degraus (soma de cinco números naturais consecutivos: 23+24+25+26+27) tal como 15 e todos os múltiplos de 5 superiores. Sendo múltiplo de 5 e não de 10, então tem uma escada de 10 degraus (figura seguinte) ao alcance de uma construção com material CUISENAIRE. 


E por ser um número ímpar tem uma escada de dois degraus 62+63 (ou será ímpar por ser soma de dois naturais consecutivos).

_________________

Representação binária:

1111101(dois)

1 × 26 + 1 × 25 + 1 × 24 + 1 × 23 + 1 × 22 + 0 × 21 + 1 × 20  

64 + 32 + 16 + 8 + 4 + 1

quinta-feira, 25 de abril de 2024

Número 50

 Hoje completam-se 50 anos após a Revolução dos Cravos. São 18263 dias vividos em democracia. 18263 dias perfazem exatamente 2609 semanas, pelo que estamos hoje numa 5.ª feira, tal como há 50 anos atrás.


50 é soma de quadrados perfeitos, 7² + 1² = 49 + 1 e de 5² + 5² = 25 + 25

Com isso podemos construir dois triângulos retângulos 'quase' interessantes: 

  • o triângulo retângulo escaleno cujas medidas dos lados são 1, 7 e √50, 
  • o triangulo retângulo isósceles com lados de medida 5, 5 e √50. 
√50 ≅ 7,071067... pouco mais que 7😉. Seria mais interessante se 50 também fosse um quadrado perfeito.

_________________
50 não é um número triangular, mas fica 'en/cravado' entre dois números triangulares, o 45 e o 55:


Conseguimos que 50 seja a soma de números triangulares, por exemplo, 10+10+15+15.

_________________
50 também é a soma dos quatro primeiros termos da sequência destas pirâmides:


A 4.ª pirâmide é formada pela soma dos quatro primeiros quadrados perfeitos, a 3.ª pirâmide é a soma dos três primeiros quadrados perfeitos, a 2.ª é a soma dos dois primeiros quadrados perfeitos e a 1.ª é o primeiro quadrado perfeito. 

_____________________________________

50 é metade de 10², tal como 5 é metade de 10¹, 500 é metade de 10³, . . . é bom saber, porque multiplicar um número N por 50 é o mesmo que pensar na metade de N × 100, ou seja,

N × 50 = N × 100 ÷ 2, assim como N × 5 = N × 10 ÷ 2, ou N × 500 = N × 1000 ÷ 2, e todos sabemos como é fácil pensar no produto de um número por 10, 100, 1000,... assim como é fácil pensar na metade de qualquer número, não? Também dividir N por 50 é o mesmo que pensar no dobro do quociente de N por 100. Contas fáceis.

O que não é tão fácil é multiplicar a democracia. 

terça-feira, 9 de abril de 2024

Número 100

 Hoje é o dia 9 do mês de abril e é o dia 100 do ano 2024.

É possível construir cinco retângulos diferentes com 100 quadrados congruentes: 



Os divisores de 100 são 1 e 100, 2 e 50, 4 e 25, 5 e 20, e 10. 

A decomposição em fatores primos é 2²×5² que é igual ao produto de dois dos seus fatores 4×25. 

100 é um quadrado perfeito; é a soma dos quatro primeiros números cúbicos:




100 é o quadrado do 4.º número triangular, o qual é a soma dos quatro primeiros números naturais.




100 é a soma do quadrado de 8 com o quadrado de 6. Significa que há um triângulo retângulo com as medidas 6, 8 e 10 para os seus lados, sendo 10 a medida da hipotenusa.




No sistema de numeração de base oito, usando os algarismos 0, 1, 2, 3, 4, 5, 6, 7, cem escreve-se 144 (lê-se um, quatro, quatro na base oito). Ou seja  100 = 1 × 8² + 4 × 8¹ + 4 × 8⁰

Triângulos isoperimétricos

Há 833 decomposições de 100 em somas de três parcelas. Quantos triângulos de perímetro 100, com medidas inteiras, existem? Não há nenhum que seja equilátero porque 100 não é divisível por 3; mas o triângulo 33+33+34 fica muito perto disso.

Retângulos isoperimétricos

Com perímetro 100 e medidas inteiras é possível desenhar 25 retângulos, um deles é um quadrado de lado 25.

terça-feira, 12 de março de 2024

Número 72

Hoje é 12 de março de 2024 e é também dia 72 de 2024. 


As relações entre 12 e 72 são interessantes: 12 é divisor de 72 e é também o número de divisores de 72. São 6 os pares de divisores de 72, e 6 também é divisor de 72. Na decomposição em fatores primos temos o produto do cubo de 2 pelo quadrado de 3. 

Mantendo-nos em ℕ, aditivamente falando, é interessante referir que 72 é 

  • a soma de dois quadrados de 6. 
  • a soma de duas potências de base 2 e expoente inteiro: 64 + 8 = 26 + 23 sendo 1001000 a representação na base dois.
  • com perímetro 72, existem 18 retângulos: 2×(L+C), L+C=36, L varia de 1 a 18 e de 35 a 18 - um dos quais é quadrado de lado 18 (72 é múltiplo de 4).

Há uma particularidade na quantidade de partições, com 3 parcelas, de 72 que estão relacionadas com as de 12 e seus múltiplos:

  • são exatamente 12 as partições (em 3 parcelas) de 12,
  • as de 24 são o dobro de 24
  • as de 36 são o triplo de 36
  • ...
  • as de 72 são o sêxtuplo de 72
e parece que esta regularidade "soma e segue".

Outra curiosidade: na espiral de Ulam, o 12 e o 72 estão enquadrados por primos.

O 71 também, mas ele já é primo - gémeo do 73 - e está no centro de um × e não de uma +.

72 e 12 são também números presentes em obras literárias muito famosas.

sábado, 9 de março de 2024

Número 69

Nove de março de 2024 é o 69.º dia do ano.

O número 69 tem três ESCADAS. 


Por ser um número ímpar tem uma escada de dois degraus. E por ser um múltiplo de 3 tem uma escada de três degraus. Mas também tem uma escada de seis degraus e não é múltiplo de 6. Ele só é múltiplo de 3 e 23 e de 1 e 69. A representação dos números pelas suas ESCADAS não é uma mera curiosidade inocente, as escadas dão visibilidade a propriedades numéricas. Não querendo retirar ao leitor o prazer da descoberta, deixamos aqui só uma entre muitas questões possíveis: todos os números podem ser representados por escadas? Lembramos que uma escada é uma soma de números naturais consecutivos.

quarta-feira, 10 de janeiro de 2024

Número 10

 ·  é o 5.º número natural par (quinto porque 0, embora seja um número par, não o consideramos número natural)

              números de ordem:  1.º  2.º  3.º  4.º   5.º   6.º ...
     números naturais pares:  2     4     6     8     10   12  ...
      • qualquer número par é o dobro de um número inteiro
      • é um múltiplo de 2 
      • pode ser representado por um retângulo de duas filas de quadrados congruentes

· tem um número par de fatores/divisores

D10 = {1, 2, 5, 10}

é múltiplo de 

1 e 10 
2 e 5

 

Decomposição aditiva em duas parcelas 

saber essencial para o domínio de processos de cálculo mental

sábado, 30 de dezembro de 2023

Número 30

De entre as 75 decomposições diferentes de 30 em somas de três parcelas de números naturais, há 18 que podem constituir-se como triângulos, sendo as medidas dos lados números inteiros. Desses 18 triângulos possíveis, 7 são isósceles e 11 são escalenos; dos que são isósceles há um que é equilátero (10+10+10), e dos escalenos destaca-se um que é retângulo (5+12+13).

 

   Medidas dos lados

  Quadrados dos lados

a

b

c

a2

b2

c2

a2+b2

10

10

10

100

100

100

200

2

14

14

4

196

196

200

4

13

13

16

169

169

185

6

12

12

36

144

144

180

8

8

14

64

64

196

128

8

11

11

64

121

121

185

9

9

12

81

81

144

162

4

12

14

16

144

196

160

5

11

14

25

121

196

146

6

10

14

36

100

196

136

6

11

13

36

121

169

157

7

9

14

49

81

196

130

7

10

13

49

100

169

149

7

11

12

49

121

144

170

8

9

13

64

81

169

145

8

10

12

64

100

144

164

9

10

11

81

100

121

181

5

12

13

25

144

169

169


Por permitirem construir um triângulo retângulo, 5, 12 e 13 são um "terno pitagórico" e 30 é o seu perímetro. Dentro do intervalo de dias num mês, para além do 30 há outros dois números que são perímetro de triângulos em é possível construir um triângulo retângulo: o 12 com o terno 3, 4, 5 e o 24 com o terno 6, 8, 10.