Mostrar mensagens com a etiqueta Decomposição multiplicativa. Mostrar todas as mensagens
Mostrar mensagens com a etiqueta Decomposição multiplicativa. Mostrar todas as mensagens

segunda-feira, 12 de agosto de 2024

Número 225

 dia 225 de 2024, 12 de agosto

225 é um quadrado perfeito 

        é soma dos cinco primeiros cubos perfeitos


       é o produto de dois quadrados perfeitos e
       é soma de dois quadrados perfeitos



quarta-feira, 7 de agosto de 2024

Número 220

 220.º dia de 2024, 7 de agosto

Vamos numericar 220!

Consegues encontrar um modo eficiente de contar o número de esferas que estão empilhadas?


Partilha connosco o que descobriste.


quinta-feira, 1 de agosto de 2024

Número 214

Dia 214 de 2024, 1 de agosto

Vamos numericar com 214

214 tem apenas 4 divisores (1 e 214, 2 e 107) e somente uma escada de 4 degraus (52+53+54+55). Será que...


domingo, 28 de julho de 2024

Número 210

Dia 210 do ano dois mil e vinte e quatro, 28 de julho.

210 e 28 são ambos números triangulares: 210 é a soma dos vinte primeiros números naturais, e 28 é a soma dos sete primeiros. Mas 210 tem a particularidade de ser também o produto de dois números naturais consecutivos.



segunda-feira, 8 de julho de 2024

Número 190

 190 de 2024 - 8 de julho

190 é um número par porque é múltiplo de 2, sendo possível dispor 190 quadrados iguais de modo a formar um retângulo de dimensões 2 e 95, ou seja, 190 = 2 × 95. De modo semelhante, é múltiplo de 10 e 19, de 5 e 38 e de 1 e 190. 


190 é décimo nono número triangular pois é a soma dos 19 primeiros números naturais: uma escada de 19 degraus, começando no 1; além dessa escada tem mais duas, uma de 4 degraus que começa em 46 e outra de 5 degraus que começa em 36 (lindo! tirando 10 a cada um dos degraus da escada de 4 degraus, consegue-se obter 4×10, que é o número necessário para formar o quinto degrau da escada de 5 degraus).


sábado, 29 de junho de 2024

Número 62

No dia 181 de 2024, 29 de junho, hoje, completam-se 62 anos de vida para muita gente boa. Parabéns a todos, mas em particular para aqueles que virem esta mensagem e se acusarem aí nos comentários.

Sessenta e dois não é um número espetacular. E o 181 do ano, assim como o 29 do mês são meros primos. 

Depois do 60, que é um número "altamente composto", isto é, antes dele não há nenhum que tenha tantos (12) divisores como ele, vem o 61 que só tem dois divisores (outro primo), seguido então do 62 que tem 4 divisores. 


Mas ter 4 divisores é uma particularidade interessante, não propriamente para o sessenta e dois, mas para outra família de números, muito mais interessante, que também só tem 4 divisores. Passo a explicar. Todos os números que são produto de dois números primos têm 4 divisores. Mas há números que não são produto de dois primos e que também têm 4 divisores. É a esses que eu acho mais piada, porque dá para ilustrar ou representar geometricamente. 

Vejam lá se descobrem que família de números é essa. 

Quem descobrir, por favor, não escreva nos comentários para que outros também tenham a possibilidade de pensar no assunto. A matemática só assim é que tem piada. Quem descobrir pode enviar uma mensagem através desse formulário aí do lado direito.

Obrigado.

quinta-feira, 20 de junho de 2024

Número 20

 20 de junho de 2024



_____________________


20 só tem uma escada


_____________________


20 é um número tetraédrico

___________________

Esta é a 3.ª publicação sobre o 20. As outras estão AQUI e ALI.


quinta-feira, 13 de junho de 2024

Número 165

 Dia 165 de 2024 - 13 de junho

______________________________________

165 pode ser representado por três somas (diferentes) de quadrados perfeitos:
         
______________________________________

165 tem sete escadas numéricas

quinta-feira, 23 de maio de 2024

Número 144

 Dia 144 de 2024  ―  23 de maio

Na imagem seguinte vê-se que

  • 144 pode ser representado pela área de oito retângulos de dimensões naturais (inteiros positivos), um dos quais é quadrado ―144 é um quadrado perfeito ―, pelo que tem quinze divisores ou, também, 144 é múltiplo de quinze fatores;
  • há dois triângulos retângulos com 144 de perímetro, cujo comprimento dos lados são números naturais; portanto estamos na presença de dois ternos pitagóricos; (36, 48, 60) e (16, 63, 65);
  • 144 é o 12º termo da sequência de Fibonacci.


_______________________

Cento e quarenta e quatro escreve-se simbolicamente 144 no sistema de numeração decimal (de base 10) significando,

  • 1 centena +  4 dezenas +  4 unidades
  •  × 100    +  × 10        +  4 × 1
  •  × 10²     +  × 10¹      +  4 × 10⁰

Enquanto soma de potências de base dois e expoente inteiro 144=128+16=27+24. Portanto, no sistema de numeração de base 2 escreve-se 10010000(dois) significando,

1×27 + 0×26 + 0×25 + 1×24 + 0×23 + 0×22 + 0×21 + 0×20

 e 144 = 122 pelo que, na base 12 escreve-se 100(doze) significando

1×122 + 0×121 + 0×120    

_________________________

Como produto de números primos 144=24×32 = 2×2×2×2×3×3

_________________________

144 pode ser decomposto diferentemente em 1728 somas de três parcelas, que corresponde a 12×144. Destas, apenas 432 (um quarto de 1728 e o triplo de 144) permitem construir triângulos (em virtude da desigualdade triangular); entre estes triângulos há dois que são retângulos (mostrados na imagem), 150 acutângulos, 280 obtusângulos. Isósceles são 35, entre os quais está um equilátero.

Triângulos perímetro = 144

Isósceles

Escalenos

Acutângulos

29*

121

Retângulos

0

2

Obtusângulos

6

274

 

*1 equilátero

 

 ______________________

Uma vez que os retângulos (ou qualquer paralelogramo) têm os lados opostos iguais, o seu perímetro (P) é composto por dois comprimentos (C) e duas larguras (L), isto é, P= 2×(C+L). Se considerarmos retângulos com perímetro de 144 unidades de comprimento, o seu semiperímetro é 72. Encontrando todas as decomposições aditivas diferentes de 72 em duas parcelas (C+L) encontramos também todas as possibilidades de construir retângulos não congruentes de perímetro 144. Como 144 é múltiplo de 4, um desses retângulos será um quadrado. Queres ser tu a descobrir quantos são? Podes responder no comentário a esta publicação.


domingo, 19 de maio de 2024

Número 140

 Dia 140 de 2024  ―  19 de maio


Cento e quarenta na base dez simbolicamente escreve-se 140 que significa 

    • 1 centena    4 dezenas    0 unidades  
    • × 100        × 10           0 × 1
    • × 10²         × 10¹         × 10⁰ 

Enquanto soma de potências de base dois temos 128+8+4 = 2⁷+2³+2²

140 é um número par: pode ser representado pela área de um retângulo de 2 por 70 e também pelo perímetro de paralelogramos de medidas naturais, por exemplo, pelo quadrado de lado 35.

140 tem 12 divisores: 1 e 140, 2 e 70, 4 e 35, 5 e 28, 7 e 20, 10 e 14, ou seja, pode ser representado de seis formas diferentes como produto de dois fatores naturais. Com fatores primos 140 = 2×2×5×7. 

140 é um número piramidal, é a soma dos sete primeiros quadrados perfeitos: 1+4+9+16+25+36+49. Também pode ser escrito como soma de três quadrados perfeitos: 100+36+4.

140 é o perímetro de um triângulo retângulo cujos lados têm medidas inteiras (terno pitagórico 40, 42, 58) 40²+42²=58².

140 pode ser representado de três maneiras diferentes como soma de números naturais consecutivos (escadas numéricas): 

  • 5 degraus: 26+27+28+29+30
  • 7 degraus: 17+18+19+20+21+22+23
  • 8 degraus: 14+15+16+17+18+19+20+21



terça-feira, 7 de maio de 2024

Número 128

 Dia 128 de 2024 - 7 de maio

128 é a oitava potência de base dois e expoente inteiro (ℤ₀⁺)



Não é um quadrado perfeito, mas é soma de dois quadrados perfeitos: 2×8². A raiz quadrada de 128=11,3137... é um número irracional.

Por ser a oitava potência de base dois, 128 tem 8 divisores, e o numeral que representa 128 na base dois  tem 8 dígitos.

Na representação de 128 em base dois, na imagem acima, os dígitos estão dispostos em grupos apenas por conveniência de contagem do número de dígitos, ou de zeros . O numeral 10 000 000₍dois₎ não pode ler-se "dez milhões"  - leitura exclusiva para numerais escritos no sistema de numeração de base dez -, ou se lê "um, zero, zero,..." ou "um vezes dois elevado a sete"

____________

128 não tem escadas!😞 Não há uma única soma de números naturais consecutivos que represente 128!  Porquê!? Que outros números não gozam desta propriedade?

sábado, 4 de maio de 2024

Número 125

Dia 125 de 2024 - 4 de maio

125 tem quatro divisores {1, 125, 5, 25} tal como todos os cubos perfeitos de números primos.


_______________

125 é a medida da hipotenusa de um triângulo retângulo com lados de medidas naturais, pertencendo assim ao terno pitagórico (44, 117, 125); significa que 44²+117²=125²  

125 é também o quadrado da hipotenusa de dois triângulos retângulos, sendo, portanto, de dois modos diferentes, a soma de dois quadrados perfeitos: 

5² + 10² = 125 = 2² + 11² 


A raiz quadrada de 125 é pouco maior que 11.

_________________

Sendo um múltiplo de 5, tem uma escada de 5 degraus (soma de cinco números naturais consecutivos: 23+24+25+26+27) tal como 15 e todos os múltiplos de 5 superiores. Sendo múltiplo de 5 e não de 10, então tem uma escada de 10 degraus (figura seguinte) ao alcance de uma construção com material CUISENAIRE. 


E por ser um número ímpar tem uma escada de dois degraus 62+63 (ou será ímpar por ser soma de dois naturais consecutivos).

_________________

Representação binária:

1111101(dois)

1 × 26 + 1 × 25 + 1 × 24 + 1 × 23 + 1 × 22 + 0 × 21 + 1 × 20  

64 + 32 + 16 + 8 + 4 + 1

quinta-feira, 25 de abril de 2024

Número 50

 Hoje completam-se 50 anos após a Revolução dos Cravos. São 18263 dias vividos em democracia. 18263 dias perfazem exatamente 2609 semanas, pelo que estamos hoje numa 5.ª feira, tal como há 50 anos atrás.


50 é soma de quadrados perfeitos, 7² + 1² = 49 + 1 e de 5² + 5² = 25 + 25

Com isso podemos construir dois triângulos retângulos 'quase' interessantes: 

  • o triângulo retângulo escaleno cujas medidas dos lados são 1, 7 e √50, 
  • o triangulo retângulo isósceles com lados de medida 5, 5 e √50. 
√50 ≅ 7,071067... pouco mais que 7😉. Seria mais interessante se 50 também fosse um quadrado perfeito.

_________________
50 não é um número triangular, mas fica 'en/cravado' entre dois números triangulares, o 45 e o 55:


Conseguimos que 50 seja a soma de números triangulares, por exemplo, 10+10+15+15.

_________________
50 também é a soma dos quatro primeiros termos da sequência destas pirâmides:


A 4.ª pirâmide é formada pela soma dos quatro primeiros quadrados perfeitos, a 3.ª pirâmide é a soma dos três primeiros quadrados perfeitos, a 2.ª é a soma dos dois primeiros quadrados perfeitos e a 1.ª é o primeiro quadrado perfeito. 

_____________________________________

50 é metade de 10², tal como 5 é metade de 10¹, 500 é metade de 10³, . . . é bom saber, porque multiplicar um número N por 50 é o mesmo que pensar na metade de N × 100, ou seja,

N × 50 = N × 100 ÷ 2, assim como N × 5 = N × 10 ÷ 2, ou N × 500 = N × 1000 ÷ 2, e todos sabemos como é fácil pensar no produto de um número por 10, 100, 1000,... assim como é fácil pensar na metade de qualquer número, não? Também dividir N por 50 é o mesmo que pensar no dobro do quociente de N por 100. Contas fáceis.

O que não é tão fácil é multiplicar a democracia. 

terça-feira, 9 de abril de 2024

Número 100

 Hoje é o dia 9 do mês de abril e é o dia 100 do ano 2024.

É possível construir cinco retângulos diferentes com 100 quadrados congruentes: 



Os divisores de 100 são 1 e 100, 2 e 50, 4 e 25, 5 e 20, e 10. 

A decomposição em fatores primos é 2²×5² que é igual ao produto de dois dos seus fatores 4×25. 

100 é um quadrado perfeito; é a soma dos quatro primeiros números cúbicos:




100 é o quadrado do 4.º número triangular, o qual é a soma dos quatro primeiros números naturais.




100 é a soma do quadrado de 8 com o quadrado de 6. Significa que há um triângulo retângulo com as medidas 6, 8 e 10 para os seus lados, sendo 10 a medida da hipotenusa.




No sistema de numeração de base oito, usando os algarismos 0, 1, 2, 3, 4, 5, 6, 7, cem escreve-se 144 (lê-se um, quatro, quatro na base oito). Ou seja  100 = 1 × 8² + 4 × 8¹ + 4 × 8⁰

Triângulos isoperimétricos

Há 833 decomposições de 100 em somas de três parcelas. Quantos triângulos de perímetro 100, com medidas inteiras, existem? Não há nenhum que seja equilátero porque 100 não é divisível por 3; mas o triângulo 33+33+34 fica muito perto disso.

Retângulos isoperimétricos

Com perímetro 100 e medidas inteiras é possível desenhar 25 retângulos, um deles é um quadrado de lado 25.

quinta-feira, 14 de março de 2024

Número 14

  

Hoje, a regra para o número do dia é:

"figuras que tenham 14 de área ou de perímetro"


É infinito o número de figuras planas com área ou perímetro 14 (unidades de área e unidades de comprimento, respetivamente), mesmo que nos limitemos a medidas inteiras. 

Mas se considerarmos apenas retângulos, com medidas inteiras, então encontramos poucos. Se pudermos usar medidas racionais (inteiras e fracionárias), então já teremos uma quantidade infinita de retângulos com 14 unidades de área, ou com perímetro de 14 unidades de comprimento.

Muito obrigado aos autores residentes, alun@s e professora, por esta partilha.


outra publicação sobre o 14

 

terça-feira, 12 de março de 2024

Número 72

Hoje é 12 de março de 2024 e é também dia 72 de 2024. 


As relações entre 12 e 72 são interessantes: 12 é divisor de 72 e é também o número de divisores de 72. São 6 os pares de divisores de 72, e 6 também é divisor de 72. Na decomposição em fatores primos temos o produto do cubo de 2 pelo quadrado de 3. 

Mantendo-nos em ℕ, aditivamente falando, é interessante referir que 72 é 

  • a soma de dois quadrados de 6. 
  • a soma de duas potências de base 2 e expoente inteiro: 64 + 8 = 26 + 23 sendo 1001000 a representação na base dois.
  • com perímetro 72, existem 18 retângulos: 2×(L+C), L+C=36, L varia de 1 a 18 e de 35 a 18 - um dos quais é quadrado de lado 18 (72 é múltiplo de 4).

Há uma particularidade na quantidade de partições, com 3 parcelas, de 72 que estão relacionadas com as de 12 e seus múltiplos:

  • são exatamente 12 as partições (em 3 parcelas) de 12,
  • as de 24 são o dobro de 24
  • as de 36 são o triplo de 36
  • ...
  • as de 72 são o sêxtuplo de 72
e parece que esta regularidade "soma e segue".

Outra curiosidade: na espiral de Ulam, o 12 e o 72 estão enquadrados por primos.

O 71 também, mas ele já é primo - gémeo do 73 - e está no centro de um × e não de uma +.

72 e 12 são também números presentes em obras literárias muito famosas.